Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10910, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740884

RESUMEN

Transforming growth factor-ß (TGF-ß) signaling plays a significant role in multiple biological processes, including inflammation, immunity, and cell death. However, its specific impact on the cochlea remains unclear. In this study, we aimed to investigate the effects of TGF-ß signaling suppression on auditory function and cochlear pathology in mice with kanamycin-induced ototoxicity. Kanamycin and furosemide (KM-FS) were systemically administered to 8-week-old C57/BL6 mice, followed by immediate topical application of a TGF-ß receptor inhibitor (TGF-ßRI) onto the round window membrane. Results showed significant TGF-ß receptor upregulation in spiral ganglion neurons (SGNs) after KM-FA ototoxicity, whereas expression levels in the TGF-ßRI treated group remained unchanged. Interestingly, despite no significant change in cochlear TGF-ß expression after KM-FS ototoxicity, TGF-ßRI treatment resulted in a significant decrease in TGF-ß signaling. Regarding auditory function, TGF-ßRI treatment offered no therapeutic effects on hearing thresholds and hair cell survival following KM-FS ototoxicity. However, SGN loss and macrophage infiltration were significantly increased with TGF-ßRI treatment. These results imply that inhibition of TGF-ß signaling after KM-FS ototoxicity promotes cochlear inflammation and SGN degeneration.


Asunto(s)
Kanamicina , Ratones Endogámicos C57BL , Ototoxicidad , Transducción de Señal , Ganglio Espiral de la Cóclea , Factor de Crecimiento Transformador beta , Animales , Kanamicina/toxicidad , Transducción de Señal/efectos de los fármacos , Ototoxicidad/etiología , Ototoxicidad/metabolismo , Ototoxicidad/patología , Factor de Crecimiento Transformador beta/metabolismo , Ratones , Ganglio Espiral de la Cóclea/efectos de los fármacos , Ganglio Espiral de la Cóclea/metabolismo , Ganglio Espiral de la Cóclea/patología , Cóclea/metabolismo , Cóclea/efectos de los fármacos , Cóclea/patología , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Furosemida/farmacología , Masculino
2.
J Cancer Res Ther ; 19(Supplement): S0, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37147955

RESUMEN

Introduction: Chemotherapeutic agents can have both serious side effects and ototoxicity, which can be caused by direct toxic effects or by metabolic derangement by the agents. Cabazitaxel (CBZ) is a next-generation semi-synthetic taxane derivative that is effective in both preclinical models of human tumors that are sensitive or resistant to chemotherapy and in patients suffering from progressive prostate cancer despite docetaxel treatment. The primary aim of this study is to investigate the ototoxicity of CBZ in a rat model. Materials and Methods: : A total of 24 adult male Wistar-Albino rats were equally and randomly divided into four groups. CBZ (Jevtana, Sanofi-Aventis USA) was intraperitoneally administered to Groups 2, 3, and 4 at doses of 0.5, 1.0, and 1.5 mg/kg/week, respectively, for 4 consecutive weeks; Group 1 received only i.p. saline at the same time. At the end of the study, the animals were sacrificed and their cochlea removed for histopathological examination. Results: : Intraperitoneal administration of CBZ exerted an ototoxic effect on rats, and the histopathological results became worse in a dose-dependent manner (P < 0.05). Conclusion: : Our findings suggest that CBZ may be an ototoxic agent and can damage the cochlea. More clinical studies should be conducted to understand its ototoxicity.


Asunto(s)
Antineoplásicos , Ototoxicidad , Neoplasias de la Próstata , Humanos , Animales , Ratas , Masculino , Antineoplásicos/toxicidad , Antineoplásicos/metabolismo , Ototoxicidad/metabolismo , Ototoxicidad/patología , Ratas Wistar , Cóclea/metabolismo , Cóclea/patología , Neoplasias de la Próstata/patología
3.
Biochem Pharmacol ; 197: 114904, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34971589

RESUMEN

Cisplatin is a widely used chemotherapeutic agent for the treatment of various tumors, but its side effects limit its application. Ototoxicity, a major adverse effect of cisplatin, causes irreversible sensorineural hearing loss. Unfortunately, there are no effective approaches to protect against this damage. Autophagy has been shown to exert beneficial effects in various diseases models. However, the role of autophagy in cisplatin-induced ototoxicity has been not well elucidated. In this study, we aimed to investigate whether the novel autophagy activator trehalose could prevent cisplatin-induced damage in the auditory cell line HEI-OC1 and mouse cochlear explants and to further explore its mechanisms. Our data demonstrated that trehalose alleviated cisplatin-induced hair cell (HC) damage by inhibiting apoptosis, attenuating oxidative stress and rescuing mitochondrial dysfunction. Additionally, trehalose significantly enhanced autophagy levels in HCs, and inhibiting autophagy with 3-methyladenine (3-MA) abolished these protective effects. Mechanistically, we showed that the effect of trehalose was attributed to increased nuclear translocation of transcription factor EB (TFEB), and this effect could be mimicked by TFEB overexpression and inhibited by TFEB gene silencing or treatment with cyclosporin A (CsA), a calcineurin inhibitor. Taken together, our findings suggest that trehalose and autophagy play a role in protecting against cisplatin-induced ototoxicity and that pharmacological enhancement of TFEB-mediated autophagy is a potential treatment for cisplatin-induced damage in cochlear HCs and HEI-OC1 cells.


Asunto(s)
Antineoplásicos/toxicidad , Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Cisplatino/toxicidad , Células Ciliadas Auditivas/metabolismo , Trehalosa/farmacología , Animales , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/agonistas , Línea Celular , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/patología , Ratones , Ratones Endogámicos C57BL , Ototoxicidad/patología , Ototoxicidad/prevención & control
4.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884516

RESUMEN

Telmisartan (TM) has been proposed to relieve inflammatory responses by modulating peroxisome proliferator activator receptor-γ (PPARγ) signaling. This study aimed to investigate the protective effects of TM on kanamycin(KM)-induced ototoxicity in rats. Forty-eight, 8-week-old female Sprague Dawley rats were divided into four groups: (1) control group, (2) TM group, (3) KM group, and (4) TM + KM group. Auditory brainstem response was measured. The histology of the cochlea was examined. The protein expression levels of angiotensin-converting enzyme 2 (ACE2), HO1, and PPARγ were measured by Western blotting. The auditory threshold shifts at 4, 8, 16, and 32 kHz were lower in the TM + KM group than in the KM group (all p < 0.05). The loss of cochlear outer hair cells and spiral ganglial cells was lower in the TM + KM group than in the KM group. The protein expression levels of ACE2, PPARγ, and HO1 were higher in the KM group than in the control group (all p < 0.05). The TM + KM group showed lower expression levels of PPARγ and HO1 than the KM group.TM protected the cochlea from KM-induced injuries in rats. TM preserved hearing levels and attenuated the increase in PPARγ and HO1 expression levels in KM-exposed rat cochleae.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Kanamicina/toxicidad , Ototoxicidad/tratamiento farmacológico , PPAR gamma/metabolismo , Telmisartán/farmacología , Enzima Convertidora de Angiotensina 2/genética , Animales , Antibacterianos/toxicidad , Antihipertensivos/farmacología , Umbral Auditivo/efectos de los fármacos , Cóclea/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Femenino , Hemo Oxigenasa (Desciclizante)/genética , Ototoxicidad/etiología , Ototoxicidad/metabolismo , Ototoxicidad/patología , PPAR gamma/genética , Ratas , Ratas Sprague-Dawley
5.
Med Sci Monit ; 27: e933278, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34657931

RESUMEN

BACKGROUND Sodium salicylate (SS) induces excitotoxicity of spiral ganglion neurons (SGNs) by inhibiting the response of γ-aminobutyric acid type A receptors (GABAARs). Our previous studies have shown that SS can increase the internalization of GABAARs on SGNs, which involves dopamine D1-like receptors (D1Rs) and related signaling pathways. In this study, we aimed to explore the role of D1Rs and their downstream molecule protein kinase C (PKC) in the process of SS inhibiting GABAARs. MATERIAL AND METHODS The expression of D1Rs and GABARγ2 on rat cochlear SGNs cultured in vitro was tested by immunofluorescence. Then, the SGNs were exposed to SS, D1R agonist (SKF38393), D1R antagonist (SCH23390), clathrin/dynamin-mediated endocytosis inhibitor (dynasore), and PKC inhibitor (Bisindolylmaleimide I). Western blotting and whole-cell patch clamp technique were used to assess the changes of surface and total protein of GABARγ2 and GABA-activated currents. RESULTS Immunofluorescence showed that D1 receptors (DRD1) were expressed on SGNs. Data from western blotting showed that SS promoted the internalization of cell surface GABAARs, and activating D1Rs had the same result. Inhibiting D1Rs and PKC decreased the internalization of GABAARs. Meanwhile, the phosphorylation level of GABAARγ2 S327 affected by PKC was positively correlated with the degree of internalization of GABAARs. Moreover, whole-cell patch clamp recording showed that inhibition of D1Rs or co-inhibition of D1Rs and PKC attenuated the inhibitory effect of SS on GABA-activated currents. CONCLUSIONS D1Rs mediate the GABAAR internalization induced by SS via a PKC-dependent manner and participate in the excitotoxic process of SGNs.


Asunto(s)
Ototoxicidad/patología , Proteína Quinasa C/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de GABA-A/metabolismo , Salicilato de Sodio/efectos adversos , Ganglio Espiral de la Cóclea/patología , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Animales , Benzazepinas , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Hidrazonas/farmacología , Masculino , Modelos Animales , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ototoxicidad/etiología , Técnicas de Placa-Clamp , Cultivo Primario de Células , Ratas , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inhibidores , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/efectos de los fármacos
6.
Biochem Cell Biol ; 99(3): 385-395, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34077275

RESUMEN

Resveratrol is a non-flavonoid polyphenol compound that exists in many plants, and is considered an antitoxin. This study explores the effects from the regulation of miR-455-5p by resveratrol on cisplatin-induced ototoxicity via the PTEN-PI3K-AKT signaling pathway. For this, House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were transfected with miR-455-5p inhibitor and treated with cisplatin and resveratrol, then cell proliferation, apoptosis, and oxidative stress were evaluated. A mouse model of hearing loss was established, and these mice were treated with cisplatin, resveratrol, or cisplatin combined with resveratrol, by intraperitoneal injection. The auditory brainstem response (ABR) threshold was measured, and hair cells were examined using immunofluorescence staining. The expression levels of miR-455-5p, PTEN, and PI3K/Akt proteins were examined. The results from our in-vitro experiments indicate that resveratrol promoted viability and reduced apoptosis and oxidative stress in cisplatin-induced HEI-OC1 cells. Resveratrol upregulated miR-455-5p, downregulated PTEN, and activated the PI3K-Akt axis. These effects of resveratrol were reversed by knock-down of miR-455-5p. The results from our in-vivo experiments indicate that resveratrol protected hearing and inhibited the hair-cell injury caused by cisplatin ototoxicity. Resveratrol also upregulated miR-455-5p, downregulated PTEN, and activated the PTEN-PI3K-Akt axis in cochlear tissues from cisplatin-treated mice. These results indicate that resveratrol upregulates miR-455-5p to target PTEN and activate the PI3K-Akt signaling pathway to counteract cisplatin ototoxicity.


Asunto(s)
Cisplatino/toxicidad , MicroARNs/genética , Ototoxicidad/tratamiento farmacológico , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Resveratrol/farmacología , Animales , Antineoplásicos/toxicidad , Antioxidantes/farmacología , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ototoxicidad/etiología , Ototoxicidad/metabolismo , Ototoxicidad/patología , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética
7.
J Pediatr Hematol Oncol ; 43(7): e930-e934, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33885038

RESUMEN

The aim of this study is to evaluate risk factors contributing to the development of ototoxicity in children who received platinum-based chemotherapy for malignancies located in the head and neck region. Eighty-four children who received platinum-based chemotherapy were included. Audiologic evaluations were performed before and after each chemotherapy session through pure tone audiometry, distortion product otoacoustic emissions, and auditory brainstem response tests. Ototoxicity was evaluated using Brock, Muenster, and Chang classifications. Factors such as cranial irradiation, cumulative doses of cisplatin, age, sex, cotreatment with aminoglycosides, schedule of platinum, and type of chemotherapeutic agent were analyzed. Using χ2 tests, all risk factors were matched with the 3 ototoxicity classifications, and multivariate analyses were conducted using statistically significant risk factors. In univariate analyses, being between 5 and 12 years of age, cranial irradiation and being treated with both cisplatin and carboplatin were found to be related to ototoxicity in all 3 classifications. Logistic regression modeling analyses with these 3 risk factors showed that being between 5 and 12 years of age and being treated with both cisplatin and carboplatin significantly increased the risk of ototoxicity.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Irradiación Craneana/efectos adversos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Ototoxicidad/etiología , Adolescente , Carboplatino/administración & dosificación , Niño , Preescolar , Cisplatino/administración & dosificación , Femenino , Estudios de Seguimiento , Neoplasias de Cabeza y Cuello/patología , Humanos , Lactante , Masculino , Ototoxicidad/patología , Pronóstico , Estudios Retrospectivos , Factores de Riesgo
8.
Arch Biochem Biophys ; 701: 108752, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33675811

RESUMEN

Hearing loss caused by ototoxic drugs is a kind of acquired hearing loss. Cisplatin is one of the most commonly used drugs and its main action sites are hair cells (HCs). Sorcin is a drug-resistant calcium-binding protein belonging to the small penta-EF-hand protein family. Sorcin is highly expressed in many tissues, including bone, heart, brain, lung, and skin tissues. Single-cell RNA sequencing showed that sorcin was expressed in the outer HCs of mice, but its role remained unknown. We also found that sorcin was highly expressed in the cytoplasm of cochlear HCs and HEI-OC1 cells. After cisplatin injury, the expression of sorcin in HCs and HEI-OC1 cells decreased significantly. SiRNA transfection technology was used to knock down the expression of sorcin. The results showed that the number of apoptotic cells, the expression of cleaved caspased-3, and the expression of Bax increased while the anti-apoptotic factor Bcl-2 decreased in the siRNA-Sorcin + CIS group. The observed increase in apoptosis was related to the increase of reactive oxygen species (ROS) and the destruction of the mitochondrial membrane potential (MMP). Finally, we found that the downregulated sorcin worked by activating the P-ERK1/2 signaling pathway. Overall, this study showed that sorcin can be used as a new target to prevent the ototoxicity of platinum drugs.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas de Unión al Calcio/biosíntesis , Cisplatino/efectos adversos , Células Ciliadas Auditivas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ototoxicidad/metabolismo , Animales , Apoptosis/genética , Proteínas de Unión al Calcio/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular , Cisplatino/farmacología , Técnicas de Silenciamiento del Gen , Células Ciliadas Auditivas/patología , Sistema de Señalización de MAP Quinasas/genética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/genética , Ratones , Ototoxicidad/genética , Ototoxicidad/patología , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
9.
Biomed Environ Sci ; 34(2): 110-118, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33685569

RESUMEN

OBJECTIVE: The aim of this study was to explore the ototoxicity of toluene in the early development of zebrafish embryos/larvae. METHODS: Zebrafish were utilized to explore the ototoxicity of toluene. Locomotion analysis, immunofluorescence, and qPCR were used to understand the phenotypes and molecular mechanisms of toluene ototoxicity. RESULTS: The results demonstrated that at 2 mmol/L, toluene induced zebrafish larvae death at 120 hours post fertilization (hpf) at a rate of 25.79% and inhibited the rate of hatching at 72 hpf. Furthermore, toluene exposure inhibited the distance travelled and average swimming velocity of zebrafish larvae while increasing the frequency of movements. As shown by fluorescence staining of hair cells, toluene inhibited the formation of lateral line neuromasts and middle line 1 (Ml 1) neuromasts in 3 days post fertilization larvae in a concentration-dependent manner. Toluene altered the expression level of genes involved in ear development/function in zebrafish, among which the mRNA levels of cd164l2, tekt3, and pcsk5a were upregulated, while the level of otofb was downregulated, according to the qPCR results. CONCLUSION: This study indicated that toluene may affect the development of both the inner ear and lateral line systems in zebrafish, while the lateral line system may be more sensitive to toluene than the inner ear.


Asunto(s)
Oído Interno/efectos de los fármacos , Sistema de la Línea Lateral/efectos de los fármacos , Tolueno/toxicidad , Animales , Oído Interno/crecimiento & desarrollo , Embrión no Mamífero/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Sistema de la Línea Lateral/crecimiento & desarrollo , Locomoción/efectos de los fármacos , Ototoxicidad/etiología , Ototoxicidad/patología , Ototoxicidad/fisiopatología , Pez Cebra
10.
Biochem Pharmacol ; 186: 114513, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33713642

RESUMEN

Gentamicin (GM), an aminoglycoside antibiotic, is one commonly used clinical drugs with ototoxic side effects. One of the most principal mechanisms of its ototoxicity is that GM can activate caspase-mediated cell death pathways in the cochlea. Since the anti-apoptotic protein known as X-linked Inhibitor of Apoptosis Protein (XIAP) has been reported to directly bind to activated caspase protein and inhibit their activities, we hypothesized that it might protect cochlea hair cells from GM ototoxicity. To evaluate this hypothesis, postnatal day 2-3 (P2-3) transgenic (TG) mice, in which XIAP gene is over-expressed under a pure C57BL/6J genetic background was constructed. We first extracted the cochlea tissue of normal mice and treated them with different concentrations of GM, and the number of hair cells were observed to determine the concentration of GM used in subsequent experiments. Next, we used Western Blot experiment to examine the effect of GM on XIAP protein expression in normal mouse cochlea, and then Western Blot and RT-PCR experiments were used to identify the transgenic mice. Finally, immunofluorescence assays were used to detect the effect of GM on the expression of caspase protein and verify the protective effect of XIAP. We found that GM at a concentration of 0.5 mM significantly affected the function of cochlea hair cells, up-regulating the expression of cleaved-caspase-3 and cleaved-caspase-9 protein but down-regulating XIAP protein. In the cochlea tissues of TG mice, this effect of GM was suppressed, and the destruction of hair cells was significantly reduced, and the cleaved-caspase-3 and cleaved-caspase-9 proteins were significantly suppressed. These results suggested that XIAP reduces GM-induced ototoxicity and caspase-3/9 pathway is associated with this process.


Asunto(s)
Caspasa 3/metabolismo , Caspasa 9/metabolismo , Gentamicinas/toxicidad , Células Ciliadas Auditivas/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Ototoxicidad/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Ototoxicidad/patología , Ototoxicidad/prevención & control , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
11.
Toxicology ; 453: 152736, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33631298

RESUMEN

Cisplatin-induced ototoxicity is one of the important reasons that limit the drug's clinical application, and its mechanism has not been fully elucidated so far. The aim of this study was to explore the attenuate effect of tauroursodeoxycholic acid (TUDCA), a proteostasis promoter, on cisplatin-induced ototoxicity in vivo and in vitro, and to explore its possible mechanism. Auditory brainstem response (ABR) was measured to identify the attenuate effects of TUDCA administered subcutaneously [500 mg/kg/d × 3d, cisplatin: 4.6 mg/kg/d × 3d, intraperitoneal injection (i.p.)] or trans-tympanically (0.5 mg/mL, cisplatin: 12 mg/kg, i.p. with a pump) in Sprague-Dawley (SD) rats subjected to cisplatin-induced hearing loss. The cochlear explants of neonatal rats and OC1 auditory hair cell-like cell lines cultured in vitro were used to observe the number of apoptotic cells and the endoplasmic reticulum (ER) stress in the control, cisplatin (5 µM for 48 h for cochlear explants, 10 µM for 24 h for OC1 cells), and cisplatin + TUDCA (1 mM for 24 h for cochlear explants, 1.6 mM for 24 h for OC1 cells) groups. Differences in the expression of key proteins in the ER protein quality control (ERQC) system were detected. The changes in the attenuate effect of TUDCA on cisplatin-induced ototoxicity after down-regulating calreticulin (CRT), UDP-glucose ceramide glucosyltransferase-like 1 (UGGT1), and OS9 ER lectin (OS9) were also measured. The effect of TUDCA (10 mM) on stabilizing unfolded or misfolded proteins (UFP/MFP) was analyzed in a cell-free 0.2 % bovine serum albumin (BSA) aggregation system in vitro. Both the subcutaneous and trans-tympanic TUDCA administration alleviated cisplatin-induced increase in ABR thresholds in rats. TUDCA was able to reduce cisplatin-induced apoptosis and alleviate ER stress in cochlear explants and OC1 cells. Under the cisplatin treatment, the expression levels of CRT, UGGT1, and OS9 in the auditory hair cell increased, and the expression of total ubiquitinated proteins decreased. TUDCA attenuated the effect of cisplatin on UGGT1 and OS9, and recovered the protein ubiquitination levels. After down-regulating CRT, UGGT1, or OS9, the protective effect of TUDCA decreased. In the cell-free experimental system, TUDCA inhibited the aggregation of denatured BSA molecules. In summary, TUDCA can attenuate cisplatin-induced ototoxicity, possibly by inhibiting the accumulation and aggregation of UFP/MFP and the associated ER stress.


Asunto(s)
Cisplatino/toxicidad , Retículo Endoplásmico/efectos de los fármacos , Ototoxicidad/prevención & control , Agregado de Proteínas/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Ácido Tauroquenodesoxicólico/uso terapéutico , Animales , Antineoplásicos/toxicidad , Línea Celular Transformada , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Retículo Endoplásmico/patología , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/patología , Masculino , Ototoxicidad/patología , Agregado de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley , Ácido Tauroquenodesoxicólico/farmacología
12.
Biomed Pharmacother ; 137: 111281, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33578233

RESUMEN

BACKGROUND: Acrolein is a reactive aldehyde that forms during burning of wood and other fuels. It is also a product of lipid peroxidation (LPO) reactions and is present in cigarette smoke. Acrolein is known to cause oxidative stress and inflammatory nerve tissue damage. Lutein is a tetraterpenoid molecule with antioxidant and anti-inflammatory properties. There appear to be no studies on the effect of lutein on vestibulocochlear nerve damage induced by acrolein. The aim of this study was to investigate the effect of lutein on vestibulocochlear nerve damage induced by acrolein in rats using biochemical and histopathological methods. METHODS: The rats were divided into three groups (n = 6, for each group) a healthy control group (HG), an acrolein (ACR) group and a lutein and acrolein (LACR) group. In the LACR group, lutein was administered (1 mg/kg) via oral gavage. The ACR and HG groups received saline via oral gavage. Then, 1 h after the administration of lutein and saline, the LACR and ACR groups were treated with 3 mg/kg of acrolein via oral gavage. This procedure was repeated once a day for 30 days. RESULTS: The results of biochemical experiments showed that in the vestibulocochlear nerve tissues of the animals treated with acrolein, the levels of malondialdehyde, total oxidants, nuclear factor kappa b, tumor necrosis factor alpha and interleukin 1 beta significantly increased, whereas the levels of total glutathione and total antioxidants decreased as compared to those in the HG and LACR groups. In addition, severe histopathological damage was observed in vestibulocochlear nerve tissue of the acrolein group, whereas this damage was alleviated in the lutein group. CONCLUSION: Lutein protected vestibulocochlear nerve tissue from acrolein-associated oxidative and proinflammatory damage. This suggests that lutein might be useful in preventing or treating acrolein-induced ototoxicity.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Mediadores de Inflamación/metabolismo , Luteína/farmacología , Ototoxicidad/prevención & control , Estrés Oxidativo/efectos de los fármacos , Enfermedades del Nervio Vestibulococlear/prevención & control , Nervio Vestibulococlear/efectos de los fármacos , Acroleína , Animales , Modelos Animales de Enfermedad , Masculino , Ototoxicidad/etiología , Ototoxicidad/metabolismo , Ototoxicidad/patología , Ratas Wistar , Nervio Vestibulococlear/metabolismo , Nervio Vestibulococlear/patología , Enfermedades del Nervio Vestibulococlear/inducido químicamente , Enfermedades del Nervio Vestibulococlear/metabolismo , Enfermedades del Nervio Vestibulococlear/patología
13.
Cell Death Dis ; 12(1): 3, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33414397

RESUMEN

Macroautophagy/autophagy is a highly conserved self-digestion pathway that plays an important role in cytoprotection under stress conditions. Autophagy is involved in hepatotoxicity induced by acetaminophen (APAP) in experimental animals and in humans. APAP also causes ototoxicity. However, the role of autophagy in APAP-induced auditory hair cell damage is unclear. In the present study, we investigated autophagy mechanisms during APAP-induced cell death in a mouse auditory cell line (HEI-OC1) and mouse cochlear explant culture. We found that the expression of LC3-II protein and autophagic structures was increased in APAP-treated HEI-OC1 cells; however, the degradation of SQSTM1/p62 protein, the yellow puncta of mRFP-GFP-LC3 fluorescence, and the activity of lysosomal enzymes decreased in APAP-treated HEI-OC1 cells. The degradation of p62 protein and the expression of lysosomal enzymes also decreased in APAP-treated mouse cochlear explants. These data indicate that APAP treatment compromises autophagic degradation and causes lysosomal dysfunction. We suggest that lysosomal dysfunction may be directly responsible for APAP-induced autophagy impairment. Treatment with antioxidant N-acetylcysteine (NAC) partially alleviated APAP-induced autophagy impairment and apoptotic cell death, suggesting the involvement of oxidative stress in APAP-induced autophagy impairment. Inhibition of autophagy by knocking down of Atg5 and Atg7 aggravated APAP-induced ER and oxidative stress and increased apoptotic cell death. This study provides a better understanding of the mechanism responsible for APAP ototoxicity, which is important for future exploration of treatment strategies for the prevention of hearing loss caused by ototoxic medications.


Asunto(s)
Acetaminofén/efectos adversos , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ototoxicidad , Estrés Oxidativo/efectos de los fármacos , Animales , Línea Celular , Ratones , Ratones Endogámicos C57BL , Ototoxicidad/metabolismo , Ototoxicidad/patología
14.
Oxid Med Cell Longev ; 2020: 1782659, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343803

RESUMEN

Ferroptosis is a recently discovered iron-dependent form of oxidative programmed cell death distinct from caspase-dependent apoptosis. In this study, we investigated the effect of ferroptosis in neomycin-induced hair cell loss by using selective ferroptosis inhibitor liproxstatin-1 (Lip-1). Cell viability was identified by CCK8 assay. The levels of reactive oxygen species (ROS) were determined by DCFH-DA and cellROX green staining. The mitochondrial membrane potential (ΔΨm) was evaluated by TMRM staining. Intracellular iron and lipid peroxides were detected with Mito-FerroGreen and Liperfluo probes. We found that ferroptosis can be induced in both HEI-OC1 cells and neonatal mouse cochlear explants, as evidenced by Mito-FerroGreen and Liperfluo staining. Further experiments showed that pretreatment with Lip-1 significantly alleviated neomycin-induced increased ROS generation and disruption in ΔΨm in the HEI-OC1 cells. In parallel, Lip-1 significantly attenuated neomycin-induced hair cell damage in neonatal mouse cochlear explants. Collectively, these results suggest a novel mechanism for neomycin-induced ototoxicity and suggest that ferroptosis inhibition may be a new clinical intervention to prevent hearing loss.


Asunto(s)
Células Ciliadas Auditivas/metabolismo , Neomicina/efectos adversos , Ototoxicidad/prevención & control , Quinoxalinas/farmacología , Compuestos de Espiro/farmacología , Animales , Línea Celular , Células Ciliadas Auditivas/patología , Ratones , Neomicina/farmacología , Ototoxicidad/metabolismo , Ototoxicidad/patología , Especies Reactivas de Oxígeno/metabolismo
15.
J Cell Mol Med ; 24(20): 12065-12081, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32929878

RESUMEN

Ferroptosis is a recently recognized form of non-apoptotic cell death caused by an iron-dependent accumulation of lipid hydroperoxides, which plays important roles in a wide spectrum of pathological conditions. The present study was aimed to investigate the impact of ferroptosis on cisplatin-induced sensory hair cell damage. Cell viability was determined by Cell Counting Kit-8 and lactase dehydrogenase assays. The reactive oxygen species (ROS) levels were evaluated by 2,7-Dichlorodi-hydrofluorescein diacetate (DCFH-DA) and MitoSox-Red staining. Mitochondrial membrane potential (MMP) was measured by tetramethylrhodamine methyl ester (TMRM) staining. Lipid peroxidation, intracellular and mitochondrial iron were detected by Liperfluo, C11-BODIPY581/591 , FerroOrange and Mito-FerroGreen, respectively. We found that cisplatin treatment not only markedly augmented ROS accumulation, decreased the MMP, but increased lipid peroxidation and iron accumulation in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells. Of note, treatment with the specific ferroptosis inhibitor ferrostatin-1 could effectively abrogate the cisplatin-induced toxicity and subsequent cell death. Specifically, the improvement of mitochondrial functions is important mechanisms for protective action of ferroptosis inhibitor against cisplatin-induced damages in HEI-OC1 cells. Moreover, inhibition of ferroptosis significantly protected murine cochlear hair cells against cisplatin damage. In addition, treatment murine cochlear hair cells with ferroptosis inducer, RSL3, significantly exacerbated cisplatin-induced damage, which could be alleviated by ROS inhibitor N-acetyl-L-cysteine. Collectively, our study indicated that ferroptosis inhibition could alleviate the cisplatin-induced ototoxicity via inactivation of lipid peroxide radical and improvement of mitochondrial function in hair cells.


Asunto(s)
Cisplatino/efectos adversos , Citoprotección , Ferroptosis , Células Ciliadas Auditivas/patología , Ototoxicidad/patología , Aldehídos/metabolismo , Animales , Carbolinas/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ciclohexilaminas/farmacología , Citoprotección/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Hierro/metabolismo , Sobrecarga de Hierro/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos C57BL , Fenilendiaminas/farmacología , Especies Reactivas de Oxígeno/metabolismo
16.
Eur J Pharmacol ; 887: 173338, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32781170

RESUMEN

Hydroxytyrosol (HT), a polyphenol widely contained as an ester in olive fruits and olive leaves, exhibits a broad spectrum of effectiveness. The present study was designed to investigate the effect of HT alone as well as in the combination with cisplatin on the House Ear Institute-Organ of Corti 1 cells (HEI-OC1) and C57BL/6 cochlear hair cells in vitro. The cell viability was measured by cell counting kit-8 (CCK8) assay. The levels of reactive oxygen species were evaluated by Dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining. The expression of phosphorylated Jun N-terminal kinase (p-JNK) and cleaved-caspase 3 was assessed by Western blotting. The apoptosis was detected by terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) staining. The distribution of apoptosis inducing factor (AIF) was determined by immunofluorescent staining. HT alleviated the levels of reactive oxygen species in both untreated state and after cisplatin stimulus. However, HT at concentration of 100 µM decreased the cell viability of HEI-OC1 from 100 ± 17.38% in control group to 50.17 ± 1.89% and increased the expression of p-JNK and c-caspase 3 from 0.62 ± 0.10, 0.20 ± 0.050 in the control group to 1.24 ± 0.18, 0.85 ± 0.18 in the group treated with 30 µM cisplatin, as well as to 1.64 ± 0.14, 1.44 ± 0.12 in the group with 30 µM cisplatin +100 µM HT, respectively. Meanwhile, HT triggered AIF transferring to nuclei and, also, led to cochlear HCs arranging disorderly and missing. Moreover, HT elevated the expression of p-JNK and c-caspase 3 from 1.00 ± 0.27, 1.00 ± 0.26 in the control group to 2.23 ± 0.24, 22.87 ± 3.80 in the group with 30 µM cisplatin, and to 2.75 ± 0.23, 31.56 ± 3.86 in the group with 30 µM cisplatin+100 µM HT correspondingly. Taken together, data from this work reveal that HT itself possesses toxic effect on HCs mainly thorough AIF-dependent apoptosis, while, it aggravates the ototoxicity-caused by cisplatin via both JNK and AIF pathways related apoptosis. Findings from this work offer clear evidence that that HT might not be recommended to utilize for preventing cisplatin-induced ototoxicity.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Cisplatino/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ototoxicidad/metabolismo , Alcohol Feniletílico/análogos & derivados , Animales , Animales Recién Nacidos , Antiinfecciosos/administración & dosificación , Antiinfecciosos/toxicidad , Antineoplásicos/administración & dosificación , Antineoplásicos/toxicidad , Células Cultivadas , Cisplatino/administración & dosificación , Relación Dosis-Respuesta a Droga , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Endogámicos C57BL , Ototoxicidad/patología , Alcohol Feniletílico/administración & dosificación , Alcohol Feniletílico/toxicidad
17.
Asian Pac J Cancer Prev ; 21(7): 2155-2162, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32711445

RESUMEN

BACKGROUND: Cisplatin is an alkylating agent that inhibits DNA replication and interferes with proliferation of cancer cells. However, the major limiting factor for its use is the possible development of adverse effects, including ototoxicity. Up till now, the mechanisms of this ototoxicity remain poorly understood. However, induction of oxidative stress and activation of the inflammatory cascade were suggested as contributing factors. PURPOSE: The aim of this study was to explore the effect of L-arginine on cisplatin-induced ototoxicity in rats. METHODS: Thirty male adult Wistar rats were divided into three equal groups as follows: control group; cisplatin group and cisplatin + L-arginine group. Auditory brainstem response (ABR), tissue oxidative stress parameters, total nitrate/nitrite, nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase-1 (HO-1) content, transforming growth factor beta 1 (TGF-ß1), tumor necrosis factor alpha (TNF-α) and interleukin 15 (IL-15) were assessed. Also, the cochlear tissues were subjected to histopathological and electron microscopic examination. RESULTS: Administration of L-arginine to cisplatin-treated rats induced significant decrease in the average ABR threshold shifts at all frequencies, tissue TGF-ß1, TNF-α and IL-15 associated with significant increase in tissue antioxidant enzymes, total nitrate/nitrite and Nrf2/HO-1 content compared to cisplatin group. Also, pretreatment of cisplatin-injected rats with L-arginine induced significant improvement of the histopathological and electron microscopic picture compared to cisplatin group. CONCLUSION: L-arginine may serve as a promising therapeutic modality for amelioration of cisplatin-induced ototoxicity.
.


Asunto(s)
Arginina/farmacología , Cisplatino/toxicidad , Hemo Oxigenasa (Desciclizante)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico/metabolismo , Ototoxicidad/prevención & control , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Antineoplásicos/toxicidad , Antioxidantes/metabolismo , Masculino , Ototoxicidad/etiología , Ototoxicidad/metabolismo , Ototoxicidad/patología , Estrés Oxidativo , Ratas , Ratas Wistar , Transducción de Señal
18.
J Tissue Eng Regen Med ; 14(8): 1149-1156, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32593214

RESUMEN

Gentamicin-induced cochlear hair cell ototoxicity, such as oxidative stress and apoptosis, could be attenuated by mouse inner ear stem cells (IESCs). However, it is still unclear whether such protective effects could be mediated by exosomes derived from IESCs (IESCs-ex). In the present study, HEI-OC1 cells were exposed to gentamicin (2 mM) to establish an ototoxicity model and further treated with exosomes isolated from miR-182-5p transferred or non-transferred IESCs. IESCs-ex improved HEI-OC1 cell viability, as assayed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide method, and alleviated the oxidative stress response induced by the gentamicin treatment, as confirmed by measuring the malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase levels. IESCs-ex increased relative miR-182-5p expression and decreased FOXO3 expression in the gentamicin-exposed HEI-OC1 cells. Furthermore, exosomes derived from miR-182-5p mimics that were pre-treated with IESCs could increase miR-182-5p and Bcl-2 expressions and decrease FOXO3 and Bax expressions in gentamicin-exposed HEI-OC1 cells. All of these results indicate that IESCs-ex could attenuate gentamicin-induced HEI-OC1 cell apoptosis and oxidative stress through the miR-182-5p/FOXO3 axis.


Asunto(s)
Oído Interno/metabolismo , Exosomas , Proteína Forkhead Box O3/metabolismo , Gentamicinas/efectos adversos , MicroARNs/metabolismo , Ototoxicidad , Animales , Oído Interno/patología , Exosomas/metabolismo , Exosomas/patología , Exosomas/trasplante , Gentamicinas/farmacología , Ratones , Ototoxicidad/metabolismo , Ototoxicidad/patología , Ototoxicidad/terapia , Células Madre
19.
J Int Adv Otol ; 16(2): 218-221, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32510456

RESUMEN

OBJECTIVES: The aim of this study was to assess whether nivolumab is ototoxic in rats and whether this ototoxicity is dose-dependent. MATERIALS AND METHODS: Twelve rats were divided into two groups: Group 1 (control group, 6 rats, 12 ears) received intraperitoneal saline for 14 days. Group 2 (study group, 6 rats, 12 ears) and received two doses of 3 mg/kg intraperitoneal nivolumab within 14 days. Auditory brainstem responses (ABRs) were performed preoperatively and 4 and 8 weeks postoperatively. We compared between the groups, morphologic appearance of spiral ganglion cells and organ of Corti and density of spiral ganglion cells (measured with conventional light microscope connected to a personal computer). RESULTS: In our control group, both spiral ganglion and organ of corti had a normal morphological appearance. In our study group, spiral ganglion cells had a normal morphological appearance. However, some sections showed possibly mild degenerative changes in the organ of corti. Of 12 samples in the study group, four had a significant loss of density of spiral ganglion cells compared to the control group. The baseline ABR thresholds did not significantly differ between the groups (p=0.713). There was no statistically significant difference between the groups regarding ABR thresholds at week 4 (p=0.347). However, a statistically significant difference was observed in the ABR thresholds at week 8 (p=0.045). CONCLUSION: The results of our study showed that nivolumab treatment has ototoxic effects. Based on our results, we recommend monitoring the changes in the hearing ability of chemotherapy patients.


Asunto(s)
Antineoplásicos Inmunológicos/toxicidad , Nivolumab/toxicidad , Ototoxicidad/etiología , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Órgano Espiral/efectos de los fármacos , Ototoxicidad/patología , Ratas , Ganglio Espiral de la Cóclea/efectos de los fármacos
20.
Toxicol Lett ; 331: 1-10, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32428544

RESUMEN

Cisplatin is a well-known and commonly used chemotherapeutic agent. However, cisplatin-induced ototoxicity limits its clinical use. Previous studies have shown an important role of reactive oxygen species (ROS) accumulation in the pathogenesis of cisplatin-induced ototoxicity. In many cell types, the transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant response element (ARE) protect against oxidative stress by suppressing ROS. Here our results showed that cisplatin injury reduced Nrf2 expression and inhibited Nrf2 translocation in HEI-OC1 cells and Nrf2 activator tert-butylhydroquinone (TBHQ) rescued hair cells from cisplatin induced apoptosis by suppressing the total cellular ROS accumulation. Moreover, we found that decreased ROS accumulation induced by TBHQ didn't depend on mitochondrial derived ROS production, indicating that Nrf2 activation alleviated cisplatin induced oxidative stress and apoptosis through mitochondrial-independent ROS production. Therefore, we provide a potential strategy of prevention and treatment for cisplatin-induced ototoxicity by Nrf2 activation. In conclusion, Nrf2 activation protects auditory hair cells from cisplatin-induced ototoxicity through suppressing the total cellular ROS levels which arise from sources other than mitochondria.


Asunto(s)
Antineoplásicos/toxicidad , Cisplatino/toxicidad , Células Ciliadas Auditivas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Ototoxicidad/prevención & control , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Hidroquinonas/farmacología , Masculino , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/genética , Ototoxicidad/patología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...